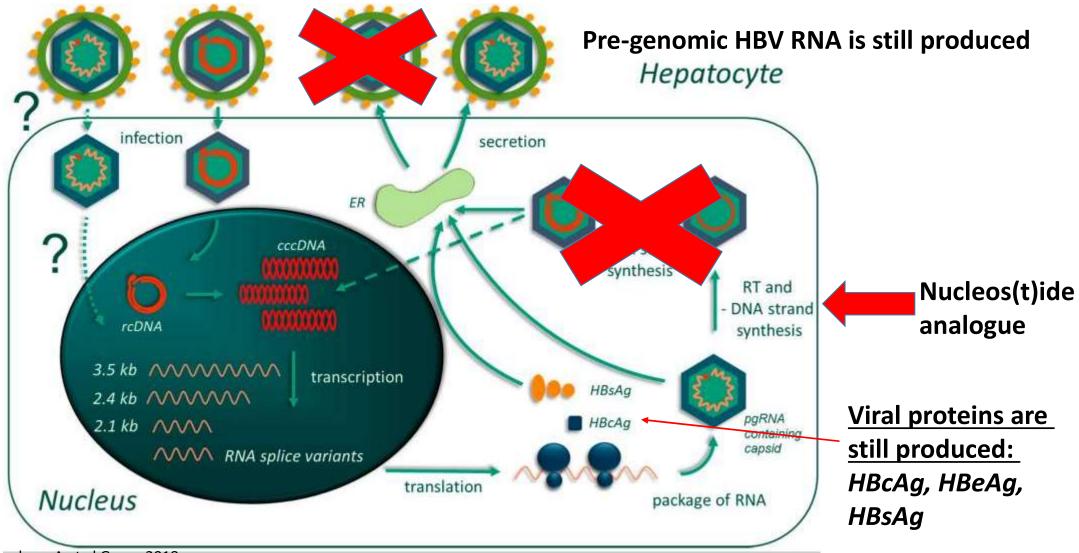
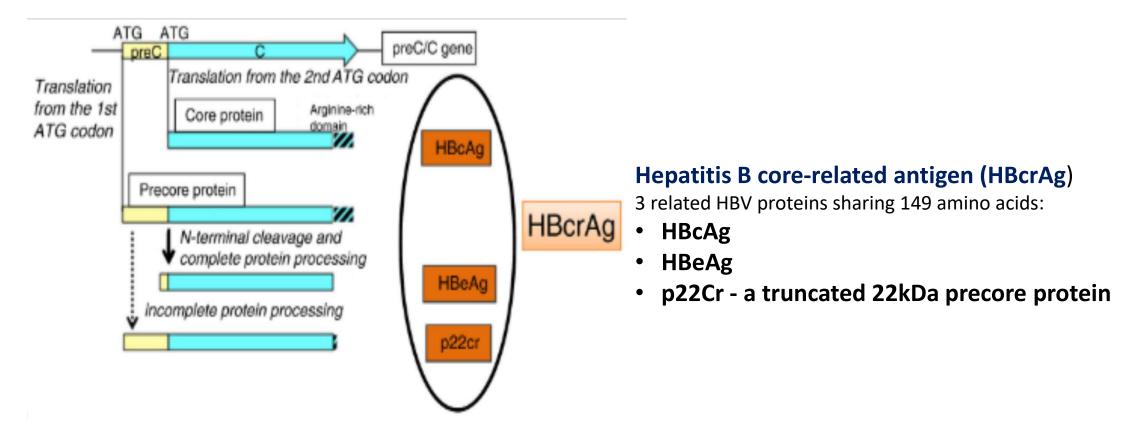
Image: Image:

Biomarkers of HBV transcriptional activity - HBcrAg and pre-genomic HBV RNA during antiviral therapy with nucleos(t)ide analogue help to predict optimal timing of therapy withdrawal


<u>I Carey</u>¹, J Gersch², Wang B¹, M Kuhns², G Cloherty², G Dusheiko¹, K Agarwal¹ ¹Institute of Liver Studies, King's College Hospital, London, UK ²Abbott Laboratories, Abbott Park, Illinois, USA



Non-invasive biomarkers of cccDNA transcription

Kostyusheva A et al Genes 2018

Hepatitis B core related antigen Non-invasive biomarker of cccDNA transcription

3 different cohorts aims

To evaluate:

- The concentrations of pg HBV RNA and HBcrAg in
 3 selected cohorts of patients with chronic hepatitis B
- the utility of these markers to predict clinical outcomes (ALT flares and HBV DNA re-activation) after NA withdrawal

Cohort A

What predicts high ALT flares after stopping NA?

Nucleos(t)ide analogue therapy withdrawal

- Nucleos(t)ide analogue (NA) suppresses HBV DNA replication, but does not provide complete cure due to minimal impact on cccDNA transcriptional activity
- Withdrawal of long-term NA therapy is possible in non-cirrhotic patients, but it is not clear who would be a good candidate for this approach at time of stopping NA
- Traditional markers, HBeAg negative status, low baseline HBV DNA and HBsAg decline >1 log₁₀IU/ml during NA therapy were associated with successful NA withdrawal
- New biomarkers of cccDNA transcriptional activity (HBcrAg and pre-genomic HBV RNA) are still detected in patients with fully suppressed HBV DNA and might be helpful in identifying good candidates for NA withdrawal approach

Aims

To compare:

 the concentrations of HBV DNA, HBsAg, HBcrAg and pre-genomic (pg) HBV RNA during therapy in patients with chronic hepatitis B treated long-term with nucleos(t)ide analogue before stopping NA therapy

To evaluate:

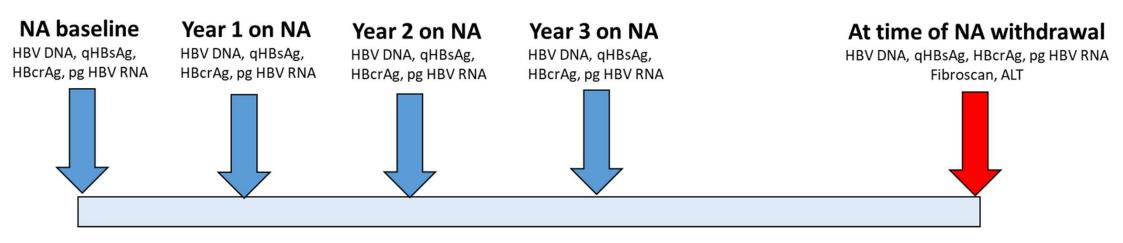
 whether on-treatment markers of cccDNA transcriptional activity can help with selecting good candidates and timing of successful NA withdrawal

Patients

25 patients with long-term suppressed HBV DNA (for at least 3 years) and stopped NA (median follow up 52 weeks)
 Baseline characteristics at initiation of NA therapy

	All cohort (n=25)
Male patients (#, %)	n= 16 (64%)
HBeAg positive patients (#, %)	n= 2 (8%)
Median fibrosis stage by Ishak (range)	3 (2-3)
Median age (range)	48 years (24 - 66)
Median baseline HBV DNA (IQR; range)	4.6 log ₁₀ IU/ml (1.2; 2.5 - 8.8)
Median baseline HBsAg (IQR; range)	3.81 log ₁₀ IU/ml (0.8; 2.4 – 4.9)
Median baseline ALT activity (IQR; range)	32 IU/L (26; 17 – 256)
HBV genotypes distribution	# of patients (%)
• A	n= 5 (20%)
• B	n= 3 (12%)
• C	n= 1 (4%)
• D	n= 5 (20%)
• E	n= 11 (44%)
Duration of therapy at time of withdrawal (IQR; range)	84 months (52; 38-118)
Type of therapy - TDF vs. ETV (# of patients)	21: 4

Serum concentrations of the following markers were analysed:

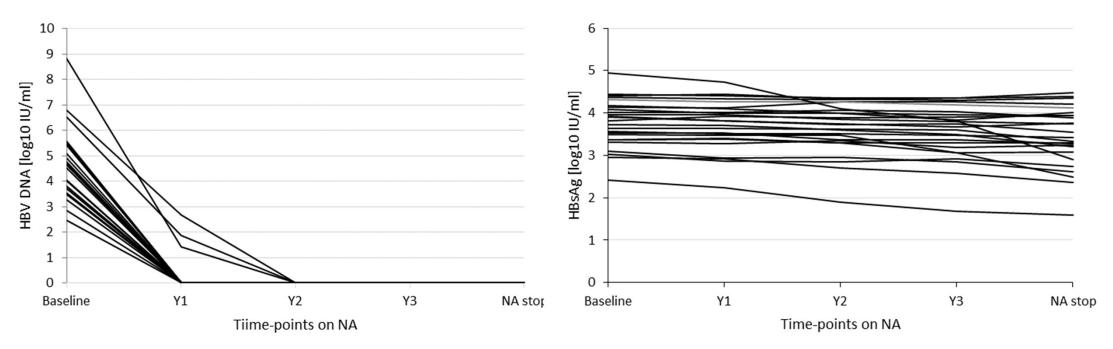

During therapy on-treatment assessments

- HBV DNA (IU/mL) using COBAS AmpliPrep/TaqMan real-time PCR assay (Roche);
- Quantitative HBsAg (IU/mL) using Abbott ARCHITECT chemiluminescent microparticle immunoassay (Abbott);

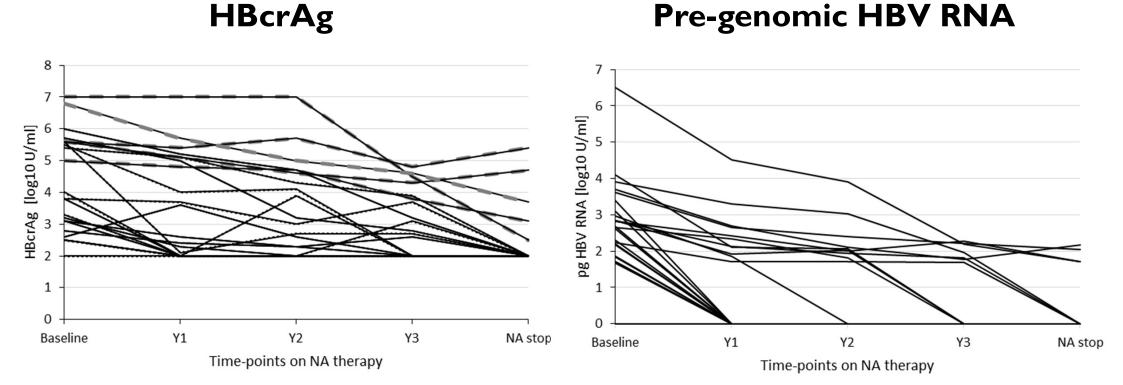
Retrospective analysis

- HBcrAg (U/mL) using Lumipulse G HBcrAg chemiluminescent enzyme immunoassay (Fujirebio);
- Pre-genomic (pg) HBV RNA (U/mL) by a novel dual-target realtime PCR research assay (Abbott Diagnostics) as reported by Butler et al

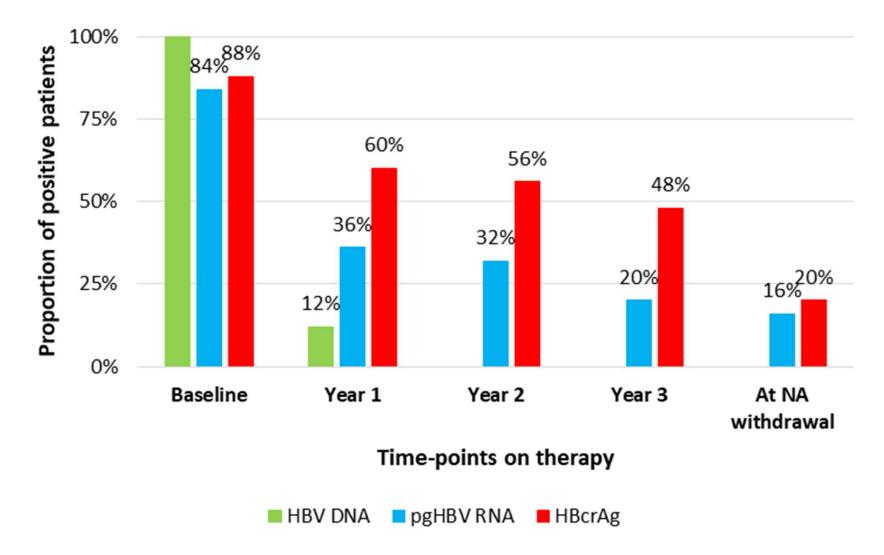
Serum concentrations of HBV biomarkers were analysed at the following time-points:



Median duration of therapy: 84 months (range 38 -118)


Changes in traditional on-treatment markers

HBV DNA

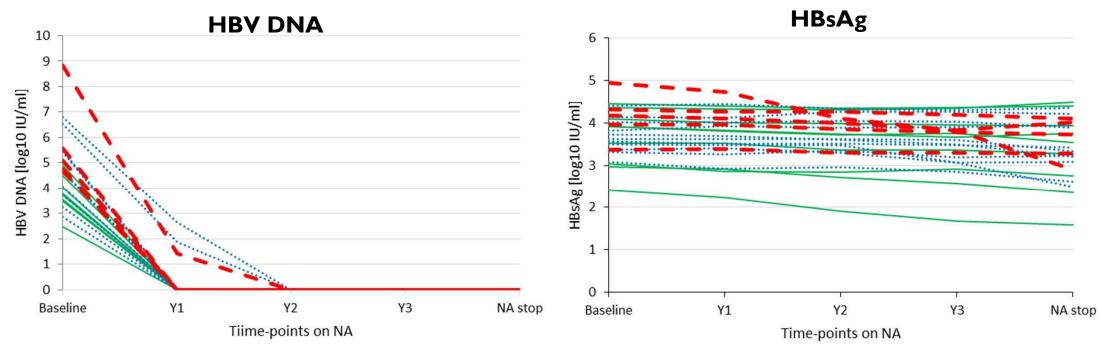

HBsAg

Changes in on-treatment cccDNA transcription markers

Proportion of positive patients on therapy

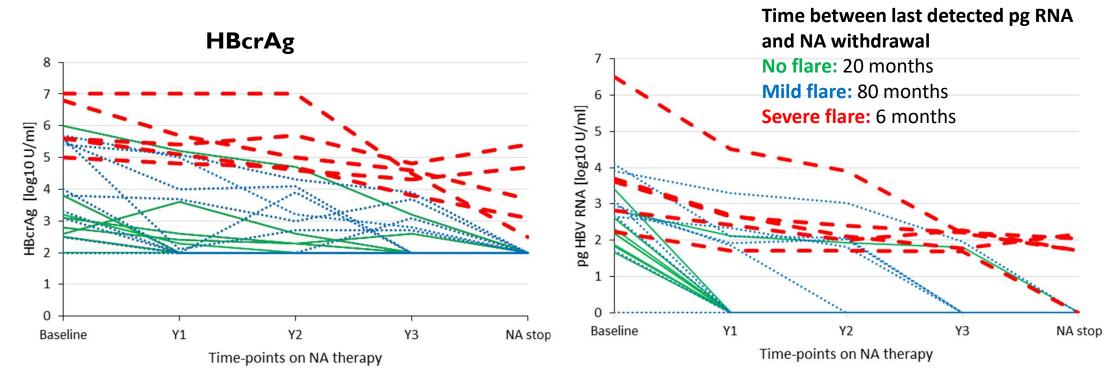
Patients25 patients with long-term suppressed HBV DNA (for at least 3 years)
and stopped NA (median follow up 52 weeks)ALT and HBV DNA concentrations after NA withdrawal

ALT flares after NA withdrawal:

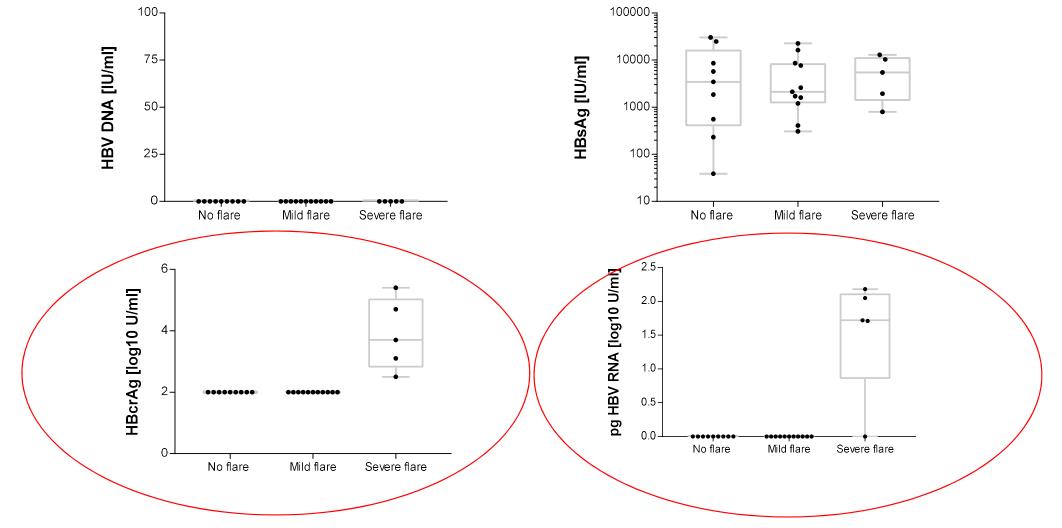

- No/minimal flare (< 2 UNL ALT) 9 patients (36%)
- Mild flare (>2 < 5 UNL ALT) 11 patients (44%)
- Severe flare (> 10 UNL ALT) 5 patients (20%)

Patients

25 patients with long-term suppressed HBV DNA (for at least 3 years) and stopped NA (median follow up 52 weeks)


	No flare	Mild flare	Severe flare (n=5)	
	(n=9)	(n=11)		
Male patients (#, %)	n= 4 (44%)	n= 7 (64%)	n= 5 (100%)	p<0.01
Median fibrosis stage by Ishak (range)	3 (2-3)	3 (2-3)	3 (2-3)	
Median age (range)	49 years (34 - 64)	47 years (31 - 57)	51 years (24 - 66)	
Median baseline HBV DNA	3.73 log ₁₀ IU/ml	4.67 log ₁₀ IU/ml	5.1 log ₁₀ IU/ml	n<0.01
(IQR; range)	(0.8; 2.5 - 4.9)	(1.8; 2.9 – 6.8)	(2.5; 4.7 – 8.8)	p<0.01
Median baseline HBsAg	3.91 log ₁₀ IU/ml	3.63 log ₁₀ IU/ml	4.17 log ₁₀ IU/ml	
(IQR; range)	(1.2; 2.4 - 4.4)	(0.7; 3.1 - 4.4)	(1.0; 3.4 - 4.9)	
Median baseline HBcrAg	2.8 log ₁₀ U/ml	3.8 log ₁₀ U/ml	5.6 log ₁₀ U/ml	p<0.01
(IQR; range)	(1.3; 2.0 – 6.0)	(3.0; 2.0- 5.7)	(1.6; 5.1 – 7.0)	
Median baseline pg HBV RNA	2.19 log ₁₀ U/ml	2.67 log ₁₀ U/ml	3.6 log ₁₀ U/ml	p<0.01
(IQR; range)	(0.9; 0 - 3.9)	(1.44; 0 - 4.1)	(2.6; 2.2 – 6.5)	h .0.01
Median baseline ALT activity	21 IU/L	44 IU/L	61 IU/L	p<0.05
(IQR; range)	(20; 17 - 62)	(30; 20 - 256)	(44; 25 - 83)	h~0.02
Duration of therapy at time of	55 months	100 months	72 months	
withdrawal (IQR; range)	(42; 38-114)	(46; 58-118)	(49; 54-110)	

On-treatment HBV DNA and HBsAg according to ALT flares post NA withdrawal


	Baseline	Year1	Year 2	Year 3	NA stop		Baseline	Year1	Year 2	Year 3	NA stop
No flare (n=9)	100%	0%	0%	0%	0%	No flare (n=9)	100%	100%	100%	100%	100%
Mild flare (n=11)	100%	18%	0%	0%	0%	Mild flare (n=11)	100%	100%	100%	100%	100%
Severe flare (n=5)	100%	20%	0%	0%	0%	Severe flare (n=5)	100%	100%	100%	100%	100%

On-therapy HBcrAg and pg HBV RNA

	Baseline	Year1	Year 2	Year 3	NA stop		Baseline	Year1	Year 2	Year 3	NA stop
No flare (n=9)	78%	56%	44%	22%	0%	No flare (n=9)	100%	11%	11%	11%	0%
Mild flare (n=11)	82%	45%	45%	36%	0%	Mild flare (n=11)	82%	45%	36%	9%	0%
Severe flare (n=5)	100%	100%	100%	100%	100%	Severe flare (n=5)	100%	100%	100%	100%	80%

At time of NADifference in HBV biomarkers at time of NA withdrawalwithdrawalaccording to flare

Conclusions – Cohort A

- Serum HBcrAg and pg HBV RNA appear to be sensitive biomarkers of continued cccDNA transcription in CHB patients despite inhibition of DNA synthesis during NA therapy.
- These markers, at time of NA withdrawal were strong predictors for severe ALT flares and might help with a timing of NA withdrawal.

Cohort B

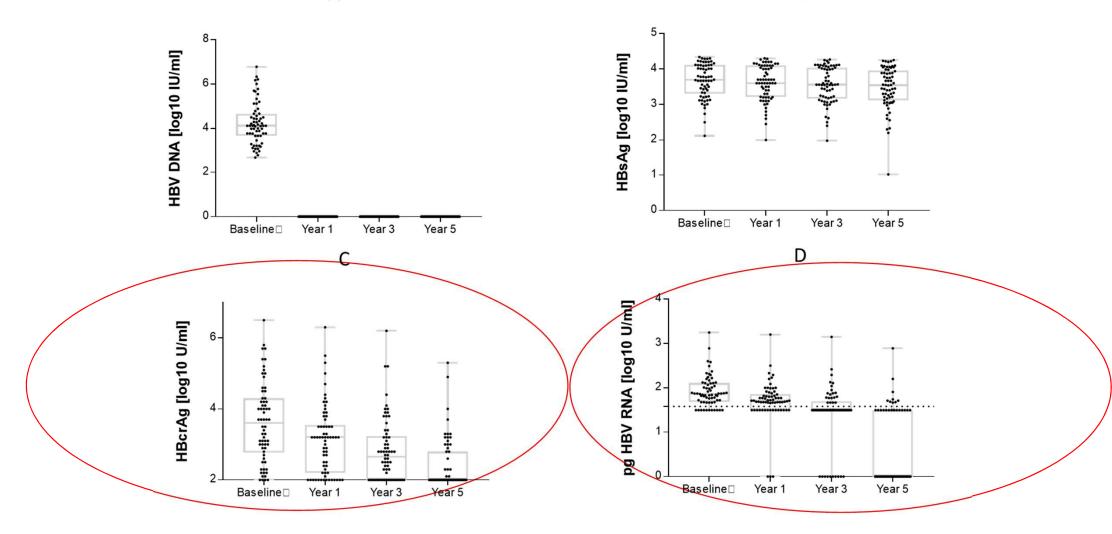
Proportions of patients with still detected pg HBV RNA during NA therapy?

Aims for cohort **B**

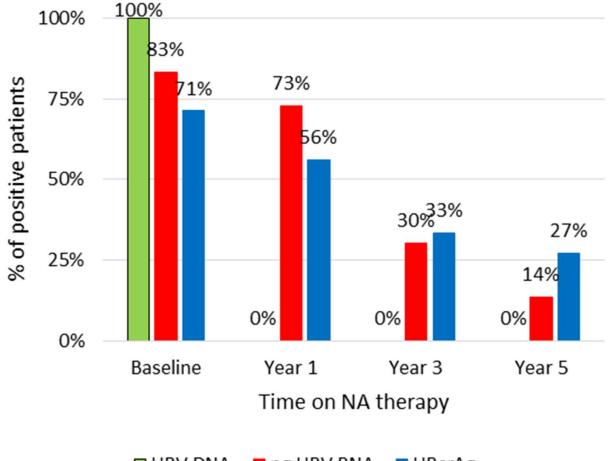
To evaluate:

the proportion of patients with still <u>detected HBcrAg</u> and <u>pre-genomic (pg) HBV RNA</u> during therapy in patients with chronic hepatitis B treated long-term with nucleos(t)ide analogue (NA)

Serum concentrations of the following markers were analysed:

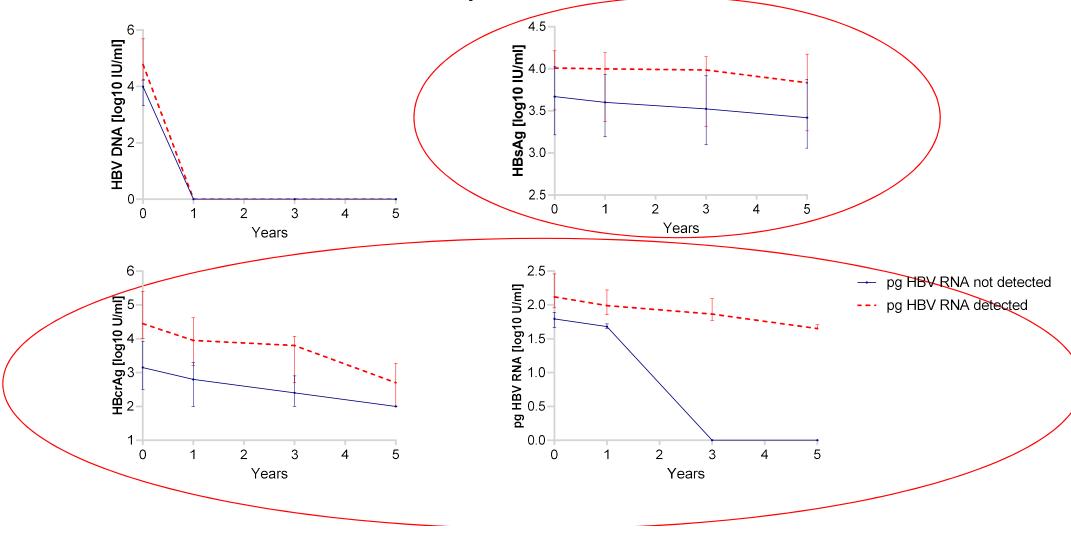

- HBV DNA (IU/mL) using COBAS AmpliPrep/TaqMan real-time PCR assay (Roche);
- **Quantitative HBsAg** (IU/mL) using Abbott ARCHITECT chemiluminescent microparticle immunoassay (Abbott);
- **HBcrAg** (U/mL) using Lumipulse G HBcrAg chemiluminescent enzyme immunoassay (Fujirebio);
- Pre-genomic HBV RNA (U/mL) by a novel dual-target real-time PCR research assay (Abbott Diagnostics) as reported by Butler et al

Cohort B


66 HBV DNA negative patients on long-term suppressive therapy with nucleoside analogue (NA), all HBeAg negative

Male patients (#, %)	n= 48 (73%)
Median fibrosis stage by Ishak (range)	3 (2-3)
Median age (range)	$AE_{\text{MODIF}}(10, 67)$
Median age (range)	45 years (19 - 67)
Median baseline HBV DNA	4.12 log ₁₀ IU/ml
(IQR; range)	(1.0; 2.67 - 6.78)
Median baseline HBsAg	3.69 log ₁₀ IU/ml
(IQR; range)	(0.81; 2.12 - 4.34)
Median baseline HBcrAg	3.6 log ₁₀ U/ml
(IQR; range)	(1.53; 2.0 – 6.5)
Median baseline pg HBV RNA	1.87 log ₁₀ U/ml
(IQR; range)	(0.43; 1.65 – 3.25)
Median baseline ALT activity	45 IU/L
(IQR; range)	(20; 33 – 212)
HBV genotypes distribution	# of patients (%)
• A	n= 12 (18%)
• B	n= 2 (3%)
• C	n= 10 (15%)
• D	n= 10 (15%)
• E	n= 32 (49%)

Cohort B: Dichotomy between HBV DNA suppression and markers of cccDNA transcription ?



Cohort B: Dichotomy between HBV DNA suppression and markers of cccDNA transcription ?

■ HBV DNA ■ pg HBV RNA ■ HBcrAg

Cohort B: Baseline differences between patients pg HBV RNA detected vs. not detected after 3 years on NA?

Conclusions – Cohort B

Despite long-term full suppression of HBV DNA during NA therapy about third patients had still **detectable** pre-genomic HBV RNA after 3 years of therapy and 14% patients after 5 years of therapy reflecting still active transcriptional activity of cccDNA suggesting that longer duration of therapy is required in some patients prior to considering NA withdrawal

Cohort C

The risk of HBV re-activation in chronic HBV patients treated with NA who achieved **HBsAg loss** - when we can stop the therapy?

Aims for cohort C

To assess:

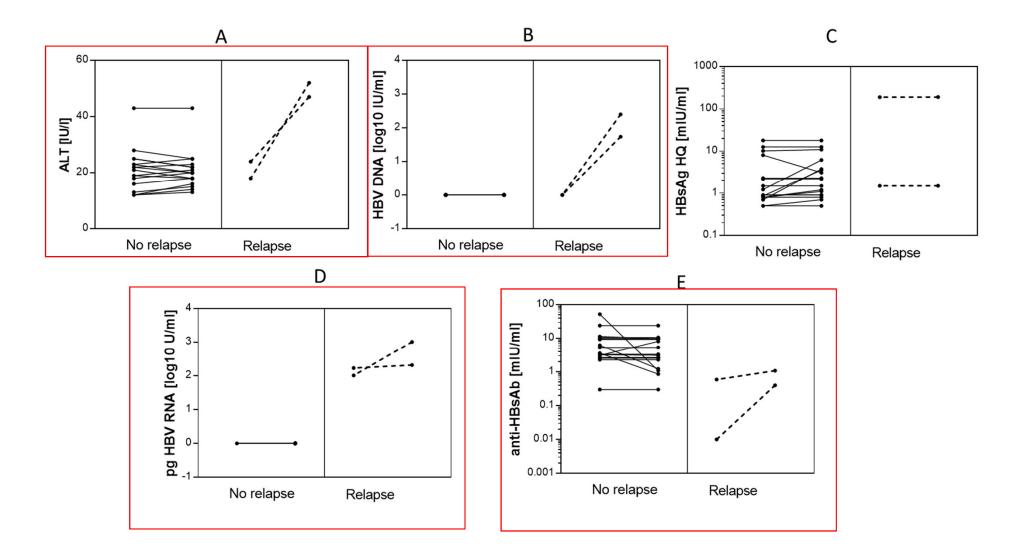
 the role of ultra-sensitive HBsAg assay and new cccDNA transcriptional activity markers (HBcrAg and pre-genomic HBV RNA) in predicting HBV re-activation in chronic HBV patients who achieved HBsAg loss during antiviral and stopped antiviral therapy

Serum concentrations of the following markers were analysed:

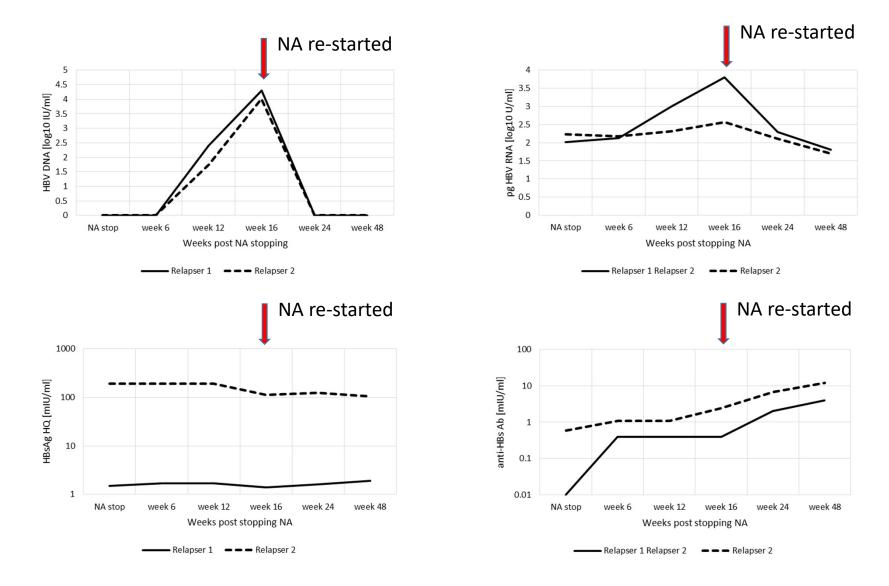
- HBV DNA (IU/mL) using COBAS AmpliPrep/TaqMan real-time PCR assay (Roche);
- **Quantitative HBsAg** (IU/mL) using Abbott ARCHITECT chemiluminescent microparticle immunoassay (Abbott);
- HBcrAg (U/mL) using Lumipulse G HBcrAg chemiluminescent enzyme immunoassay (Fujirebio);
- Pre-genomic HBV RNA (U/mL) by a novel dual-target real-time PCR research assay (Abbott Diagnostics) as reported by Butler et al;
- Ultrasensitive HBsAg (mIU/ml) using Lumipulse G HBsAg HQ chemiluminescent enzyme immunoassay (Fujirebio) with the low quantification limit 0.5 mIU/ml

Cohort C

At time of withdrawal


	All cohort
	(n=19)
Median age	36 years
(IQR; range)	(10; 21 - 57)
Median fibrosis stage by Ishak	2
(range)	(2-4)
Duration of therapy at time of	8.58 years
withdrawal (IQR; range)	(3.5; 1.6 – 12.2)
Median duration on therapy	1.76 years
since HBsAg loss (IQR; range)	(0.6; 0.5 – 3.8)
Median HBV DNA at time of	0 log ₁₀ IU/ml
withdrawal (IQR; range)	(0; 0)
Median HBsAg HQ at time of	1.23 mIU/ml
withdrawal (IQR; range)	(7.3; 0.5 - 190)
Median HBcrAg at time of	0 log ₁₀ U/ml
withdrawal (IQR; range)	(0; 0)
Median pg HBV RNA at	0 log ₁₀ U/ml
withdrawal (IQR; range	(0; 0 – 2.2)
Median anti-HBsAb at time of	3.32 mIU/ml
withdrawal (IQR; range)	(8; 0 - 53)
Median ALT activity at time of	21 IU/L
withdrawal (IQR; range)	(8; 12 - 43)

HBV DNA reactivation after NA withdrawal


• No relapse- 17 patients

patients

Cohort C: Difference in markers after withdrawal (no relapse vs. relapse)

Cohort C: Therapy response after re-activation – changes in markers

Conclusions – Cohort C

Pre-genomic HBV RNA was exclusively detected only in the patients with HBV re-activation after achieving HBsAg loss

Ultra-sensitive HBsAg was not helpful into predicting HBV re-activation

Summary

- Serum HBcrAg and pg HBV RNA appear to be sensitive biomarkers of continued cccDNA transcription in CHB patients despite inhibition of DNA synthesis during NA therapy.
- These markers, at time of NA withdrawal were strong predictors for severe ALT flares and HBV DNA reactivation (post HBsAg loss).
- These biomarkers may reflect differential intracellular pathways between HBV replication and transcription.

Acknowledgements

- King's College Hospital patients
- Hepatitis Testing Service of Institute of Liver Studies, King's College Hospital, London, UK
- Department of Infectious Diseases at Abbott Diagnostics, North Chicago, Illinois, USA